Measurements of the Viscosities of Saturated and Compressed Fluid 1-Chloro-1,2,2,2-Tetrafluoroethane (R124) and Pentafluoroethane (R125) at Temperatures Between 120 and 420 K

D. E. Diller¹ and S. M. Peterson¹

Received October 19, 1992

The shear viscosities of saturated and compressed fluid 1-chloro-1,2,2,2tetrafluoroethane (R124) and pentafluoroethane (R125) have been measured with two torsional crystal viscometers at temperatures between 120 and 420 K and at pressures up to 50 MPa. At small molar volumes, the fluidity (reciprocal viscosity) increases linearly with molar volume at fixed temperature and weakly with temperature at fixed volume. We have described this behavior with simple empirical equations and have compared the data of Shankland and of Ripple with them. The data of Ripple are in good agreement with our data for both fluids.

KEY WORDS: chlorotetrafluoroethane; compressed fluid; fluidity; saturated liquid; torsional crystal viscometer; viscosity.

1. INTRODUCTION

Accurate mathematical models are needed for calculating the viscosities of substitutes for chlorofluorocarbon fluids. As both accurate data and an accurate molecular theory of liquids are lacking, we have measured the dependences of the viscosities of saturated and compressed fluid 1-chloro-1,2,2,2-tetrafluoroethane (R124) and pentafluoroethane (R125) on temperature and on pressure.

¹ Thermophysics Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80303, U.S.A.

2. APPARATUS AND PROCEDURES

The method, apparatus, and procedures are essentially the same as described in Refs. 1 and 2. Two torsional crystal viscometers were used to cover the temperature range 120-420 K. A torsional crystal, approximately 5 cm long and 0.5 cm in diameter [1], was used at temperatures below 320 K. Another torsional crystal, approximately 5 cm long and 0.3 cm in diameter [2], was used at temperatures above 320 K.

The fluids were analyzed for halocarbon impurities and water using gas chromatographic methods. The R124 sample contained 0.02 mol% carbon dioxide, 0.02% air, and about 21 ppm water. According to the supplier the R125 sample contained 0.267% R115, 2.0 ppm carbon dioxide, and 0.4 ppm carbon monoxide. Molecular sieves were placed in the supply cylinders to remove residual water. Measurements were made on several samples of each fluid with good repeatability. Viscosities, η , were obtained [1, 2] from measured resonance curve bandwidths, Δf , and resonant frequencies, f, using the equation [3]

$$\eta = \frac{\pi f}{\rho} \left[\frac{M}{S} \right]^2 \left[\frac{\Delta f}{f} - \frac{\Delta f_{\text{vac}}}{f_{\text{vac}}} \right]^2 \tag{1}$$

where ρ is the fluid density, M is the mass of the crystal, and S is the surface area of the crystal. Densities were calculated from measured temperatures and pressures and an extended corresponding-states model [4]. The errors in the densities are estimated to be smaller than 1%.

3. RESULTS AND DISCUSSION

3.1. 1-Chloro-1,2,2,2-tetrafluoroethane (R124)

Measurements of the viscosity of saturated liquid R124, at temperatures between 120 and 385 K, are given in Table I. Measurements of the viscosity of compressed fluid R124, at temperatures between 150 and 420 K and at pressures to 50 MPa, are given in Table II. The dependence of the viscosity of R124 on density is shown in Fig. 1. At high densities, there is a transition from a weak dependence on density to a very strong dependence. The dependence of the fluidity (reciprocal viscosity) [5–7] on the molar volume is shown in Fig. 2. The fluidity increases nearly linearly with molar volume in this volume range. There is a small dependence on temperature at fixed volume. There is no transition in the volume dependence corresponding to the transition in the density dependence in Fig. 1.

Viscosities of R124 and R125

Our data for saturated and compressed liquid R124 have been correlated using an empirical fluidity-volume-temperature equation,

$$\eta^{-1} = 228.0 \left[\exp(-3.88 \times 10^4 / T^2) \right] (V - 0.0742) -980.0 \left\{ \exp[-71.43(0.244 - V)] \right\}$$
(2)

where η is the viscosity in mPa · s, T is the temperature in K, and V is the molar volume in dm³ · mol⁻¹. The differences between our data and Eq. (2)

Temperature (K)	Density (mol · dm ⁻³)	Viscosity (mPa · s)
120.00	12.89	42.44
130.00	12.82	17.71
140.00	12.72	8.68
150.00	12.59	5.252
160.00	12.44	3.444
170.00	12.29	2.386
180.00	12.13	1.791
190.00	11.97	1.401
200.00	11.80	1.112
210.00	11.64	0.904
220.00	11.47	0.753
230.00	11.29	0.645
240.00	11.11	0.557
250.00	10.93	0.474
260.00	10.74	0.415
270.00	10.54	0.370
280.00	10.33	0.322
290.00	10.11	0.287
300.00	9.87	0.254
310.00	9.62	0.222
320.00	9.36	0.200
330.00	9.07	0.178
340.00	8.75	0.156
345.00	8.57	0.146
350.00	8.39	0.137
355.00	8.19	0.128
360.00	7.98	0.119
365.00	7.75	0.111
370.00	7.49	0.104
375.00	7.20	0.096
380.00	6.85	0.087
385.00	6.42	0.080

Table I. Viscosity of Saturated LiquidChloro-1,2,2,2-tetrafluorethane (R124)

Temperature (K)	Pressure (MPa)	Density (mol · dm ⁻³)	Viscosity (mPa · s)	
420.00	56.17	9.37	0.210	
	50.08	9.65	0.197	
	41.25	9.27	0.176	
	34.66	9.02	0.160	
	27.66	8.86	0.142	
	20.71	8.24	0.122	
	16.83	7.92	0.109	
	13.81	7.59	0.100	
	10.44	7.07	0.0854	
	7.212	6.12	0.0621	
	6.081	5.35	0.0514	
	5.111	3.68	0.0356	
	3.465	1.51	0.0203	
370.00	54.15	10.31	0.260	
	48.26	10.18	0.245	
	41.59	10.01	0.229	
	34.63	9.80	0.214	
	27.41	9.56	0.195	
	20.63	9.27	0.176	
	13.70	8.90	0.155	
	/.10/	8.35	0.128	
250.00	52 70	/.80	0.113	
330.00	JZ.19 18 18	10.34	0.300	
	40.40	10.45	0.260	
	34.46	10.29	0.204	
	27.50	0.00	0.247	
	20.76	9.66	0.227	
	13.83	9.36	0.185	
	9.971	9.14	0.100	
	7.046	8.95	0.159	
	3.533	8.64	0.147	
320.00	30.41	10.46	0.307	
	27.41	10.39	0.299	
	23.99	10.30	0.286	
	20.71	10.20	0.274	
	17.06	10.09	0.262	
	13.68	9.97	0.251	
	10.37	9.85	0.240	
	6.780	9.69	0.225	
	3.528	9.53	0.211	
300.00	30.50	10.77	0.373	
	27.29	10.70	0.359	
	23.83	10.62	0.345	
	20.76	10.55	0.334	
	10.96	10.45	0.321	
	13./4	10.36	0.306	
	10.38	10.25	0.293	
	0.934	10.14	0.282	
	5.405	10.01	0.208	

 Table II.
 Viscosity of Compressed Fluid 1-Chloro-1,2,2,2-tetrafluorothane (R124)

Temperature (K)	Pressure (MPa)	Density (mol · dm ⁻³)	Viscosity (mPa · s)	
270.00	30.83 27.51	11.21 11.16	0.509 0.492	
	24.06	11.09	0.473	
	20.68	11.03	0.462	
	17.28	10.96	0.440	
	10.44	10.89	0.427	
	6923	10.72	0.398	
	3.441	10.63	0.378	
250.00	30.35	11.49	0.641	
	27.61	11.45	0.622	
	24.20	11.39	0.611	
	20.56	11.34	0.586	
	17.26	11.28	0.575	
	13.80	11.22	0.552	
	6 001	11.13	0.528	
	3 522	11.00	0.312	
220.00	27.53	11.87	0.993	
	24.35	11.83	0.953	
	20.59	11.78	0.925	
	17.19	11.74	0.897	
	13.67	11.69	0.870	
	10.32	11.64	0.853	
	7.005	11.58	0.816	
200.00	3.439	11.53	0.781	
200.00	29.79	12.10	1.40	
	24.11	12.13	1.44	
	20.72	12.08	1.37	
	17.26	12.03	1.33	
	13.80	11.99	1.27	
	10.39	11.95	1.25	
	6.866	11.90	1.19	
170.00	3.494	11.85	1.15	
170.00	30.85	12.60	3.28	
	∠1.44 23.96	12.37	3.17	
	20.84	12.54	3.02	
	17.32	12.47	2.97	
	13.78	12.44	2.76	
	10.51	12.40	2.67	
	6.980	12.37	2.60	
1 50 00	3.443	12.33	2.47	
150.00	31.04	12.86	7.45	
	27.14	12.82	/.I3 6.91	
	20.69	12.00	6.61	
	17.21	12.74	6.40	
	13.02	12.71	6.21	
	10.41	12.68	5.91	
	6.891	12.65	5.72	
	3.520	12.62	5.43	

Table II. (Continued)

Fig. 1. Dependence of the viscosity of saturated and compressed fluid R124 on density.

Fig. 2. Dependence of the fluidity of saturated and compressed fluid R124 on molar volume.

Fig. 3. Comparison of our data for saturated and compressed liquid R124 with Eq. (2).

Fig. 4. Comparison of Shankland's data [8] and Ripple's data [9] for saturated liquid R124 with Eq. (2).

Temperature (K)	Density (mol · dm ⁻³)	Viscosity (mPa · s)
176.00	13.89	1.099
180.00	13.79	0.996
185.00	13.66	0.889
190.00	13.53	0.787
195.00	13.40	0.719
200.00	13.27	0.640
205.00	13.14	0.590
210.00	13.00	0.529
215.00	12.87	0.489
220.00	12.73	0.445
225.00	12.58	0.412
230.00	12.44	0.378
235.00	12.29	0.353
240.00	12.14	0.325
245.00	12.98	0.306
250.00	11.82	0.282
255.00	11.66	0.262
260.00	11.48	0.247
265.00	11.31	0.227
270.00	11.12	0.215
275.00	10.93	0.199
280.00	10.73	0.184
285.00	10.52	0.170
290.00	10.29	0.160
295.00	10.06	0.148
300.00	9.80	0.138
305.00	9.53	0.126
310.00	9.23	0.116
315.00	8.90	0.105
320.00	8.52	0.096
325.00	8.08	0.089
330.00	7.51	0.075

Table III. Viscosity of Saturated Liquid Pentafluoroethane (R125)

Temperature (K)	Pressure (MPa)	Density (mol · dm ⁻³)	Viscosity (mPa · s)	_
420.00	53.07 49.41 45.21 42.23 38.26 34.75 31.37 27.75 24.38 20.80 18.11 15.40 13.90 10.65	10.12 9.95 9.75 9.59 9.35 9.13 8.87 8.55 8.20 7.75 7.32 6.759 6.355 5.077	0.142 0.136 0.128 0.122 0.114 0.107 0.099 0.092 0.0840 0.0735 0.0659 0.0572 0.0514 0.0396	
	8.05 7.857 6.346 6.206 4.591	3.571 3.452 2.579 2.502 1.685	0.0319 0.0311 0.0242 0.0239 0.0204	
370.00	$\begin{array}{c} 52.14\\ 48.22\\ 44.82\\ 41.34\\ 38.62\\ 34.94\\ 31.27\\ 27.65\\ 24.40\\ 20.87\\ 17.34\\ 13.93\\ 10.77\\ 7.831\\ 6.285\\ 5.117\\ 3.307\\ \end{array}$	$10.97 \\10.83 \\10.69 \\10.55 \\10.42 \\10.24 \\10.04 \\9.81 \\9.57 \\9.27 \\8.89 \\8.420 \\7.771 \\6.634 \\5.123 \\3.217 \\1.497 \\$	$\begin{array}{c} 0.186\\ 0.177\\ 0.171\\ 0.163\\ 0.157\\ 0.149\\ 0.139\\ 0.132\\ 0.123\\ 0.112\\ 0.101\\ 0.0878\\ 0.0751\\ 0.0557\\ 0.0446\\ 0.0268\\ 0.0186\\ \end{array}$	
335.00	44.39 41.47 37.80 34.74 31.12 27.62 24.26 20.51 17.21 14.03 10.25 9.50 7.667 6.851 5.219 3.848	$11.37 \\ 11.27 \\ 11.14 \\ 11.02 \\ 10.86 \\ 10.69 \\ 10.51 \\ 10.28 \\ 10.04 \\ 9.77 \\ 9.34 \\ 9.24 \\ 8.93 \\ 8.76 \\ 8.31 \\ 7.59 $	$\begin{array}{c} 0.219\\ 0.207\\ 0.200\\ 0.192\\ 0.183\\ 0.172\\ 0.162\\ 0.152\\ 0.142\\ 0.130\\ 0.116\\ 0.112\\ 0.104\\ 0.101\\ 0.088\\ 0.074 \end{array}$	

Table IV. Viscosity of Compressed Fluid Pentafluoroethane (R125)

Temperature (K)	Pressure (MPa)	Density (mol · dm ⁻³⁾	Viscosity (mPa · s)	
320.00	31.02	11.21	0.205	
	27.61	11.06	0.195	
	24.32	10.91	0.185	
	20.92	10.73	0.175	
	17.33	10.52	0.163	
	13.85	10.27	0.154	
	10.60	9.99	0.139	
	0.920	9.57	0.125	
300.00	20.229	0.95	0.104	
500.00	27.03	11.51	0.228	
	23.93	11.55	0.220	
	20.81	11.27	0.213	
	17.20	11.10	0.201	
	13.72	10.91	0.188	
	10.33	10.70	0.176	
	6.910	10.43	0.162	
	3.438	10.08	0.147	
270.00	30.57	12.33	0.328	
	28.92	12.29	0.321	
	27.50	12.25	0.315	
	21.70	12.07	0.290	
	17.24	12.04	0.285	
	13.91	11.92	0.269	
	10.23	11.64	0.255	
	7.101	11.50	0.244	
	3.626	11.31	0.224	
250.00	30.75	12.78	0.409	
	27.49	12.70	0.401	
	24.16	12.62	0.386	
	20.92	12.53	0.374	
	17.36	12.43	0.357	
	13.90	12.33	0.343	
	6 0 8 7	12.22	0.320	
	3 518	11.96	0.213	
220.00	29.28	13 39	0.618	
	27.52	13.36	0.604	
	23.04	13.27	0.585	
	19.69	13.20	0.566	
	17.38	13.16	0.548	
	13.82	13.08	0.527	
	9.81	12.98	0.502	
	6.896	12.91	0.491	
200.00	3.458	12.82	0.471	
200.00	23.33	13.72	0.825	
	17 /0	13.00	0.004	
	12.19	13.52	0.743	
	10.50	13.49	0.730	
	6.995	13.42	0.697	
	3.558	13.35	0.664	

Table IV. (Continued)

Fig. 5. Dependence of the viscosity of saturated and compressed fluid R125 on density.

are shown in Fig. 3. The estimated precision of our data is about $\pm 3\%$. The saturated liquid viscosity data of Shankland [8] and Ripple [9] are compared with Eq. (2) in Fig. 4. The Ripple data are in good agreement (about 3%) with Eq. (2). The Shankland data differ from Eq. (2) by more than 10%.

3.2. Pentafluoroethane (R125)

Measurements of the viscosity of saturated liquid pentafluoroethane (R125), at temperatures between 176 and 330 K, are given in Table III. Measurements of the viscosity of compressed fluid R125, at temperatures between 200 and 420 K and at pressures to 50 MPa, are given in Table IV. The dependence of the viscosity of saturated and compressed fluid R125 on

Fig. 6. Dependence of the fluidity of saturated and compressed liquid R125 on molar volume.

Fig. 7. Comparison of our data for saturated and compressed liquid R125 with Eq. (3).

density is shown in Fig. 5. This figure shows the range of our data for R125. The dependences of the viscosity on density and temperature are similar to those for R124. The dependence of the fluidity of saturated and compressed liquid R125 on molar volume is shown in Fig. 6. This dependence is also similar to that for R124.

Our data for saturated and compressed liquid R125 have been correlated with an empirical fluidity-volume-temperature equation,

$$\eta^{-1} = [250.0(\text{ex}0 - 2.00 \times 10^4/T^2)](V - 0.0650)$$
(3)

where η is the viscosity in mPa · s, T is the temperature in K, and V is the molar volume in dm³·mol⁻¹. The differences between our data and Eq. (3) are shown in Fig. 7. The estimated precision of our data is about $\pm 3\%$. The saturated liquid viscosity data of Shankland [8] and Ripple [9] are compared with Eq. (3) in Fig. 8. The Ripple data are in good agreement with Eq. (3). The Shankland data differ from Eq. (3) by more than 25%.

Fig. 8. Comparison of Shankland's data [8] and Ripple's data [9] for saturated liquid R125 with Eq. (3).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the Building Equipment Division, Office of Building Technologies, U.S. Department of Energy, under Contract DE-A101-91CE23808. Sample fluids were provided by E. I. Dupont de Nemours and Co. Thomas J. Bruno analyzed the R124 for halocarbon impurities and water. Marcia L. Huber computed all of the densities using an extended corresponding-states model.

REFERENCES

- 1. W. M. Haynes, Physica 108A:143 (1973).
- 2. D. E. Diller and N. V. Frederick, Int. J. Thermophys. 10:145 (1989).
- 3. B. Welber, Phys. Rev. 119:1816 (1960).
- 4. M. L. Huber and J. F. Ely, ASHRAE-Purdue Conference Proceedings, July 17-20, 1990.
- 5. A. J. Batschinski, Z. Phys. Chem. 84:643 (1913).
- 6. J. M. Hildebrand, Viscosity and Diffusivity (Wiley, New York, 1977).
- 7. D. E. Diller, High Temp. High Press. 17:139 (1985).
- 8. I. R. Shankland, presented at the AIChE Spring National Meeting, Orlando, FL, Mar. 18-22, 1990.
- 9. D. C. Ripple, Unpublished data, Thermophysics Division, National Institute of Standards and Technology, Gaithersburg, MD (1992).